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1 What’s LDA

Fisher Linear Discriminant Analysis (also called Linear Discriminant Analy-
sis(LDA)) are methods used in statistics, pattern recognition and machine learn-
ing to find a linear combination of features which characterizes or separates two
or more classes of objects or events. The resulting combination may be used as
a linear classifier, or, more commonly, for dimensionality reduction before later
classification.

LDA is closely related to PCA, for both of them are based on linear, i.e.
matrix multiplication, transformations. For the case of PCA, the transformation
is baed on minimizing mean square error between original data vectors and data
vectors that can be estimated fro the reduced dimensionality data vectors. And
the PCA does not take into account any difference in class. But for the case
of LDA, the transformation is based on maximizing a ratio of “between-class
variance” to “within-class variance” with the goal of reducing data variation
in the same class and increasing the separation between classes. Let’s see an
example of LDA as below(Figure1):

Figure 1: LDA examples

The left plot shows samples from two classes (depicted in red and blue) along with
the histograms resulting from projection onto the line joining the class means. Note
that there is considerable class overlap in the projected space. The right plot shows
the corresponding projection based on the Fisher linear discriminant, showing the

greatly improved class separation.

So our job is seeking to obtain a scalar y by projecting the samples X onto
a line:

y = θTX
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Then try to find the θ∗ to maximize the ratio of “between-class variance” to
“within-class variance”. Next, we will introduce how to use mathematic way to
present this problem.

2 Theory and Model

To figure out the LDA, first we need know how to translate “between-class
variance” and “within-class variance” to mathematic language. Then we try to
maximize the ratio between these two. To simplify the problem, we start with
two classes problem.

2.1 Two Classes Problem

2.1.1 Head the Problem

Assume we have a set of D-dimensional samples X = {x(1), x(2), ...x(m)}, N1 of
which belong to class C1, and N2 of which belong to class C2. We also assume
the mean vector of two classes in X-space:

uk =
1

Nk

∑
i∈Ck

x(i) where k = 1, 2.

and in y-space:

ûk =
1

Nk

∑
i∈Ck

y(i) =
1

Nk

∑
i∈Ck

θTx(i) = θTuk where k = 1, 2.

One way to define a measure of separation between two classes is to choose
the distance between the projected means, which is in y-space, so the between-
class variance is:

û2 − û1 = θT (u2 − u1)

Also, we can define the within-class variance for each class Ck is:

ŝ2k =
∑
i∈Ck

(y(i) − ûk)2 where k = 1, 2.

Then, we get the between-class variance and within-class variance, we can define
our objective function J(θ) as:

J(θ) =
(û2 − û1)2

ŝ21 + ŝ22

In fact, if maximizing the objective function J , we are looking for a projection
where examples from the class are projected very close to each other and at the
same time, the projected means are as farther apart as possible.

2.1.2 Transform the Problem

To find the optimum θ∗, we must express J(θ) as a function of θ. Before the
optimum,we need introduce scatter instead of variance.

We define some measures of the scatter as following:
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• The scatter in feature space-x: Sk =
∑

i∈Ck
(x(i) − uk)(x(i) − uk)T

• Within-class scatter matrix: SW = S1 + S2

• Between-class scather matrix: SB = (u2 − u1)(u2 − u1)T

Let’s see J(θ) again:

J(θ) =
(û2 − û1)2

ŝ21 + ŝ22

The scatter of the projection y can then be expressed as a function of the scatter
matrix in feature space x:

ŝ2k =
∑
i∈Ck

(y(i) − ûk)2

=
∑
i∈Ck

(θTx(i) − θTuk)2

=
∑
i∈Ck

θT (x(i) − uk)(x(i) − uk)T θ

= θTSkθ

So we can get:

ŝ21 + ŝ22 = θTS1θ + θTS2θ

= θTSW θ

Similarly, the difference between the projected means can be expressed in terms
of the means in the original feature space:

(û2 − û1)2 = (θTu2 − θTu1)2

= θT (u2 − u1)(u2 − u1)T θ

= θTSBθ

We can finally express the Fisher criterion in terms of SW and SB as:

J(θ) =
θTSBθ

θTSW θ

Next, we will maximize this objective function.

2.1.3 Solve the Problem

The easiest way to maximize the object function J is to derive it and set it to
zero.

∂J(θ)

∂θ
=

∂

∂θ
(
θTSBθ

θTSW θ
)

= (θTSW θ)
∂(θTSBθ)

∂θ
− (θTSBθ)

∂(θTSW θ)

∂θ
= 0

=⇒ = (θTSW θ)2SBθ − (θTSBθ)2SW θ = 0
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Divided by θTSW θ :

=⇒ (
θTSW θ

θTSW θ
)SBθ − (

θTSBθ

θTSW θ
)SW θ = 0

=⇒ SBθ − JSW θ = 0

=⇒ S−1W SBθ − Jθ = 0

=⇒ Jθ = S−1W SBθ

=⇒ Jθ = S−1W (u2 − u1)(u2 − u1)T θ

=⇒ Jθ = S−1W (u2 − u1)((u2 − u1)T θ︸ ︷︷ ︸
c∈R

)

=⇒ Jθ = cS−1W (u2 − u1)

=⇒ θ =
c

J
S−1W (u2 − u1)

For now, the problem has been solved and we just want to get the direction of
the θ, which is the optimum θ∗:

θ∗ ∝ S−1W (u2 − u1)

This is known as Fisher’s linear discriminant(1936), although it is not a dis-
criminant but rather a specific choice of direction for the projection of the data
down to one dimension, which is y = θ∗TX.

2.2 MultiClasses Problem

Based on two classes problem, we can see that the fisher’s LDA generalizes grace-
fully for multiple classes problem. Assume we still have a set of D-dimensional
samples X = {x(1), x(2), ..., x(m)}, and there are totally C classes. Instead
of one projection y, mentioned above, we now will seek (C − 1) projections
[y1, y2, . . . yC−1] by means of (C − 1) projection vectors θi arranged by columns
into a projection matrix Θ = [θ1|θ2| . . . |θC−1], where:

yi = θTi X =⇒ y = ΘTX

2.2.1 Derivation

First we will use the scatters in space-x as following:

• Within-class scatter matrix:

SW =

C∑
i=1

Si where Si =
∑
i∈Ci

(x(i)−ui)(x(i) − ui)T and ui =
1

Ni

∑
i∈Ci

x(i)

• Between-class scatter matrix:

SB =

C∑
i=1

Ni(ui − u)(ui − u)T where u =
1

m

m∑
i=1

x(i) =
1

m

C∑
i=1

Niui

• Total scatter matrix:
ST = SB + SW
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Figure 2: LDA Multi-Class examples

Before moving on, let us see a picture for the multi-class example in Figure2:
Similarly, we define the mean vector and scatter matrices for the projected

samples as:

• ûi = 1
Ni

∑
i∈Ci

y(i)

• û = 1
N

∑m
i=1 y

(i)

• ŜW =
∑C

i=1

∑
y∈Ci

(y − ûi)(y − ûi)T

• ŜB =
∑C

i=1Ni(ûi − û)(ûi − û)T

From our derivation for the two-class problem, we can get:

ŜW = ΘTSW Θ (1)

ŜB = ΘTSBΘ (2)

Recall that we are looking for a projection that maximizes the ratio of between-
class to within-class scatter. Since the projection is no longer a scalar (it has
C − 1 dimensions), we use the determinant of the scatter matrices to obtain a
scalar objective function:

J(W ) =
|ŜB |
|ŜW |

=
|ΘTSBΘ|
|ΘTSW Θ|

And now, our job is to seek the projection matrix Θ∗that maximize this ratio.
We will not give the derivation process. But we know that the optimal projection
matrix Θ∗ is the one whose columns are the eigenvectors corresponding to the
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largest eigenvalues of the following generalized eigenvalue problem:

Θ∗ = [θ∗1 |θ∗2 | . . . |θ∗C−1]

= argmax
|ΘTSBΘ|
|ΘTSW Θ|

=⇒ (SB − λiSW )θ∗i = 0

Thus, if SW is a non-singular matrix, and can be inverted, then the Fisher’s
criterion is maximized when the projection matrix Θ∗ is composed of the eigen-
vectors of:

S−1W SB

Noticed that, there will be at most C − 1 eigenvectors with non-zero real cor-
responding eigenvalues λi. This is because SB is of rank (C − 1) or less. So
we can see that LDA can represent a massive reduction in the dimensionality
of the problem. In face recognition for example there may be several thousand
variables, but only a few hundred classes.
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