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1 What’s PCA

Principal component analysis (PCA) is a statistical procedure that uses an or-
thogonal transformation to convert a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated variables called principal
components. The number of principal components is less than or equal to the
number of original variables.

In another word, PCA tries to identify the subspace in which the data ap-
proximately lies. Here are two examples given by Andrew Ng’s Notes:

1) Given a dataset {x(i); i = 1, ...,m } of attributes of m different types of au-
tomobiles, such as their maximum speed, turn radius, and so on. Let x(i) ∈ Rn
for each i. But unknown to us, two different features-some xi and xj-respectively
give a car’s maximum speed measured in miles per hour, and maximum speed
measured in kilometers per hour. These two features are therefore almost lin-
early dependent, up to only small differences introduced by rounding off to the
nearest mph and kph. Thus the data really lies approxmimately on an n − 1
dimensinal subspace. How can we automatically detect, and perhaps remove,
this redundancy?

2) For a less contrived example, consider a dataset resulting from a survey
of pilots for radio-controlled helicopters, where xi1 is a measure of the piloting
skill of pilot i, and xi2 captures how much he/she enjoys flying. Because RC
helicopters are very difficult to fly, only the most committed students, ones that
truly enjoy flying, become a good pilots. So, the two features x1 and x2 are
strongly correlated. Indeed, we might posit that the data actually likes along
some diagonal axis (the u1 direction) capturing the intrinsic piloting ”karma”
of a person, with small amount of noise lying off this axis. (See Figure1) How
can we automatically compute this u1 direction?

2 Prior PCA algorithm

Before running PCA, typically we first pre-process the data to normalize its
mean and variance, as following:

1. Let u = 1
m

∑m
i=1 x

(i)

2. Replace each x(i) with x(i) − u

3. Let σ2
j = 1

m

∑m
i=1(x

(i)
j )2
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Figure 1: Pilot’s skill and enjoyment relationship.

4. Replace each x
(i)
j with

x
(i)
j

σj

Step 1 − 2 zero out of the mean of the data, and may be omitted for data
known to have zero mean(for instance, time series corresponding to speech or
other acoustic signals.)

Step 3 − 4 rescale each coordinate to have unit variance, which ensures
that different attributes are all treated on the same ”scale”. For instance, if
x1 was car’s maximum speed in mph(taking values from {10 − 200}) and x2
are the number of seats(taking values from {2− 8}), then this renormalization
rescales the different features to make them more comparable. Step 3− 4 may
be omitted if we had apriori knowledge that the different features are all on the
same scale(for instance, the MNIST digits dataset).

3 PCA Theory

After the prior Steps 1−4, which has been described above, all we have to do is
just only an eigenvector calculation. Then we just choose the top k eigenvectors
as the new subspace. Why does it work and what is the theory behind the
PCA? In fact, there are many theories can explain the PCA. But we just choose
one of them, called Maximum Variance theory.

3.1 Maximum Variance Theory

Having carried out the normalization, how do we compute the ”major axis of
variation” u-that is, the direction on which the data approximately lies? One
way to pose this problem is as finding the unit vector u so that when the data
is projected onto the direction corresponding to u, the variance of the projected
onto the direction corresponding to u, the variance of the projected data is maxi-
mized. Intuitively, the data starts off with some amount of variance/information
in it. We would like to choose a direction u so that if we were to approximate the
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data as lying in the direction/subspace corresponding to u, as much as possible
of this variance is still retained.

3.2 Analysis

Consider the following dataset(See Figure 2), on which we have already carried
out the normalization steps: Now, suppose we pick u to correspond the direction

Figure 2: Sample data in 2-Dimention

shown in Figure 3. The circles denotes the projections of the original data onto
this line.

We see that in Figure 3 the projected data still has a fairly large variance,
and the points tend to be far from zero. In contrast, suppose had instead picked
the following direction(Figure 4):

In the Figure 4, the projections have a significantly smaller variance, and
are much closer to the origin.

We would like to automatically select the direction u corresponding to the
Figure 3 with maximum variance. First we should know how to calculate the
distance of the point’s projection onto u from the origin. Note that given a unit
vector u and a point x, the length of the projection of x onto u is given by xTu.
So the problem can be transformed to mathematic problem as following: choose
u so that:

max
u:
∥∥∥u∥∥∥=1

1

m

m∑
i=1

(x(i)Tu)2
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Figure 3: Sample data with Maximum Variance

Next, we will derivate the fomular as following:

=⇒ max
u:
∥∥∥u∥∥∥=1

1

m

m∑
i=1

(x(i)Tu)2

=⇒ max
u:
∥∥∥u∥∥∥=1

1

m

m∑
i=1

(x(i)Tu)T (x(i)Tu)

=⇒ max
u:
∥∥∥u∥∥∥=1

1

m

m∑
i=1

(uTx(i))(x(i)Tu)

=⇒ max
u:
∥∥∥u∥∥∥=1

1

m

m∑
i=1

uTx(i)x(i)Tu

=⇒ max
u:
∥∥∥u∥∥∥=1

uT (
1

m

m∑
i=1

x(i)x(i)T )u

=⇒ max
u:
∥∥∥u∥∥∥=1

uTΣu, where Σ =
1

m

m∑
i=1

x(i)x(i)T

Now we can use Lagrange multiplier to continue:

=⇒ maxuTΣu subject uTu = 1(Because
∥∥u∥∥ = 1)

=⇒ L(u, λ) = uTΣu+ λ(uTu− 1)

=⇒ ∂L(u, λ)

∂u
=
∂(uTΣu+ λuTu)

∂u
= Σu− λu Set

= 0

=⇒ Σu = λu
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Figure 4: Sample data with Minimum Variance

Finally, we get the Σu = λu, where u is the engivector of Σ and λ is the
engivalue of Σ.

To summarize, we have found that if we wish to find a 1-dimensional subspace
with to approximate the data, we should choose u to be the principal eigenvector
of Σ. More generally, if we wish to project our data to k-dimensional subspace
(k < n), we should choose u1, u2, ..., uk to be the top k vectors of Σ. The ui’s
now form a new, orthogonal basis for the data.1

Then, to represent x(i) in this basis, we need only compute the corresponding
vector

y(i) =


uT1 x

(i)

uT2 x
(i)

...
uTk x

(i)

 ∈ Rk.

Thus, whereas x(i) ∈ Rn, the vector y(i) now gives a lower, k-dimensional,
approximation/representation for x(i). PCA is therefore also referred to as a
dimensionality reduction algorithm. The vectors u1, ..., uk are called the
first k principal components of the data.

4 References

• PCA Lecture Notes by Andrew Ng(Stanford Univ.).

1Because Σ is symmetric, the ui’s will (or always can be chosen to be) orthogonal to each
other.
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