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1 Case Crossover

1.1 General Framework

Let X l
it be the exposure for person i belonging to location l and in interval t, t = 1, . . . , T and let Y l

it

indicates whether person i has the event at location l in interval t(1 - yes, 0 - no). Assume that the outcome
Y l
it is rare and that the probability that subject i fails in interval t at location l is given by the relative risk

model:

λi(t,X
l
it) = λit exp(βX

l
it) = λi exp(βX

l
it + γit) (1)

Each person is assumed to have his own baseline risk λit at time t consisting of two parts:

1. λi is a constant frailty for person i;

2. exp(γit) is the effect of unmeasured time-varying factors on his risk.

1.2 Case-crossover design

In the case-crossover approach, the exposure of cases in interval ti is compared to the exposures from a
set of references periods, where ti is event interval and W (ti) is a set of references periods. For example,
ti = 8 indicates the event was on the 8th day and W (8) = {7, 8, 9} means the day before and the day
after, including itself as the reference periods. The only assumption of a case-crossover design is that the
time-varying effect γit is constant for all t ∈W (ti).

Conditional on an individual being a case within a pre-specified reference windo W (ti), the probability
pliti that subject i belonging to l location and fails at time ti is

pliti = P (Ti = ti|X,W (ti),
T∑

m=1

Y l
im = 1, Li = l) (2)

=
P (Ti = ti,

∑T
m=1 Y

l
im = 1, Li = l|X,W (ti))∑

j∈W (ti)
P (Ti = j,

∑T
m=1 Y

l
im = 1, Li = l|X,W (ti))

(3)

=
λi exp{βX l

iti
+ γiti}∑

j∈W (ti)
λi exp{βX l

ij + γij}
(4)

=
exp{βX l

iti
}∑

j∈W (ti)
exp{βX l

ij}
(5)

which is free of terms λi and γiti .
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1.3 Derivation

The likelihood is defined as following, assuming subjects are independent.

L(β) =
n∏
i=1

pliti =
n∏
i=1

(
exp{βX l

iti
}∑

j∈W (ti)
exp{βX l

ij}

)
(6)

Log-likelihood:

`(β) =

n∑
i=1

log pliti =

n∑
i=1

βX l
iti − log

∑
j∈W (ti)

exp{βX l
ij}

 (7)

1.3.1 Derivation I

Take derivation directly:

∂`(β)

∂β
=

n∑
i=1

X l
iti −

1∑
j∈W (ti)

exp{βX l
ij}

∑
m∈W (ti)

exp{βX l
im}X l

im

 (8)

=
n∑
i=1

X l
iti −

∑
m∈W (ti)

X l
im

exp{βX l
im}∑

j∈W (ti)
exp{βX l

ij}

 (9)

This can be used as the updating rule for β. The complexity of this updating rule is correlated to number
of subjects(persons) and the size of window, which can be written as O(n|W |)

1.3.2 Derivation II

This derivation will be based on group information. Denote the observed number of events Y l
t at location l

in interval time t is Y l
t =

∑
i∈I Y

l
it, where I the subjects satisify the same time t, same location l and same

exposures X .
If we assume the group subjects share the same exposure, X l

it = X l
t , the Log-likelihood could be written

as
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∂`(β)

∂β
=

n∑
i=1

X l
iti −

∑
m∈W (ti)

X l
im

exp{βX l
im}∑

j∈W (ti)
exp{βX l

ij}

 (10)

=
∑
l∈L

∑
i∈l

X l
iti −

∑
m∈W (ti)

X l
im

exp{βX l
im}∑

j∈W (ti)
exp{βX l

ij}

 (11)

=
∑
l∈L

∑
i∈l

X l
ti −

∑
m∈W (ti)

X l
m

exp{βX l
m}∑

j∈W (ti)
exp{βX l

j}

 (12)

=
∑
l∈L

 T∑
t=1

Y l
t

X l
t −

∑
m∈W (t)

X l
m

exp{βX l
m}∑

j∈W (t) exp{βX l
j}

 (13)

=
∑
l∈L

 T∑
t=1

Y l
tX

l
t −

T∑
t=1

Y l
t

∑
m∈W (t)

X l
m

exp{βX l
m}∑

j∈W (t) exp{βX l
j}

 (14)

=
∑
l∈L

[
T∑
t=1

Y l
tX

l
t −

T∑
t=1

T∑
m=1

Y l
tX

l
m

I(m ∈W (t)) exp{βX l
m}∑T

j=1 I(j ∈W (t)) exp{βX l
j}

]
(15)

=
∑
l∈L

[
T∑
t=1

Y l
tX

l
t −

T∑
m=1

(
X l
m

T∑
t=1

Y l
t

I(m ∈W (t)) exp{βX l
m}∑T

j=1 I(j ∈W (t)) exp{βX l
j}

)]
(16)

=
∑
l∈L

[
T∑
t=1

Y l
tX

l
t −

T∑
t=1

(
X l
t

T∑
m=1

Y l
m

I(t ∈W (m)) exp{βX l
t}∑T

j=1 I(j ∈W (m)) exp{βX l
j}

)]
(17)

=
∑
l∈L

[
T∑
t=1

X l
t

(
Y l
t −

T∑
m=1

Y l
m

I(t ∈W (m)) exp{βX l
t}∑T

j=1 I(j ∈W (m)) exp{βX l
j}

)]
(18)

=
∑
l∈L

 T∑
t=1

X l
t

Y l
t −

∑
m∈R(t)

Y l
m

exp{βX l
t}∑

j∈W (m) exp{βX l
j}

 (19)

=
∑
l∈L

 T∑
t=1

X l
t

Y l
t − exp{βX l

t}
∑

m∈R(t)

Y l
m∑

j∈W (m) exp{βX l
j}

 (20)

Now the updating rule has been transformed into the one related to number of locations, times and
references window size. The time complexity is O(LT |W |). The advantage of this updating method is that
we shrink lots of duplicated persons row data into much smaller number of groups, which share the same
location l and exposures(features) X l

t at the same time t.

2 Cox Proportional Hazards

2.1 Model

The hazard function for the Cox proportional hazard model has the form:

h(yi|βββ) = h0(yi|βββ) exp(βββTxxxi)

where

• h0(yi|βββ): the unspecified baseline hazard function.
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• i ∈ [1, n]: each individual and n is the total number of individuals. .

• yi = min(ti, ci): ti is time-to-event(failure time) and ci is right-censoring time.

• xxxi = (xi1, xi2, . . . , xip)
T : p-vector of features for the individual i.

• βββ = (β1, β2, . . . , βp)
T : p-vector of underlying model parameters.

The n observed data DDD = {(yi, δi,xxxi) : i = 1, . . . , n}, where δi = I(ti ≤ ci) is an indicator variable such
that δi = 1 if the observation is not censored and 0 otherwise.

2.2 Partial Likelihood

To estimate the underlying parameters βββ, the original likelihood L(βββ|DDD) is hard to maximize. Cox proposed
to maximize the partial likelihood:

Lp(βββ|DDD) =
n∏
i=1

(
exp(βββTxxxi)∑

t∈R(yi)
exp(βββTxxxt)

)δi
where R(yi) is the risk set of the i-th observation, defined as R(yi) = {t : yt ≥ yi}

2.3 Estimate Parameters

Maximizing partial likelihood is equivalent to maximize log-partial likelihood:

lp(βββ|DDD) =
n∑
i=1

δi

βββTxxxi − log

 ∑
t∈R(yi)

exp (βββTxxxt)


The negated log-partial likelihoods are convex, and a wide range of optimization algorithms can be

utilized. In our experiments, we apply Limited-memory BFGS algorithm to minimize the negated log-partial
likelihoods:

βββ∗ = argmin
βββ
−lp(βββ|DDD)

To apply L-BFGS, we have to calculate the first derivatives of −lp(βββ|DDD) with respect to βββ:

−l′p(βj) = −
n∑
i=1

δi

(
xij −

∑
t∈R(yi)

xtj exp (βββ
Txxxt)∑

t∈R(yi)
exp (βββTxxxt)

)
To produce approximate standard errors for the regression coefficients, we need to calculate the second
derivatives:

−l′′p(βj) =
n∑
i=1

δi


∑

t∈R(yi)
x2tj exp (βββ

Txxxt)∑
t∈R(yi)

exp (βββTxxxt)
−

(∑
t∈R(yi)

xtj exp (βββ
Txxxt)∑

t∈R(yi)
exp (βββTxxxt)

)2


3 Proportional Hazard Model with Frailties

3.1 model

For estimation of zip code specific long-term air-pollution mortality risks, we will consider proportional
hazard model with multivariate random effects(frailties). For this model, event times from the same group
(zip code area) are likely to be correlated. Suppose there are C number of clusters(zip code areas). Then the
proportional hazard model with frailties has the form:

h(yij |βββi) = h0(yij |βββi) exp (βββTi xxxij + bi)

where
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• h0(yij |βββi): the baseline hazard function.

• i ∈ [1, C]: each clusters, C is the total number clusters(zip code areas).

• j ∈ [1, ni]: each individual from cluster i, and ni is the total number of individual from ith cluster.

• yij = min(tij , cij): where tij is the failure time, and cij is the right-censorinbg time.

• δij : is an indicator variable such that δij = 1 if the observation is not censored and 0 otherwise.

• xxxij : p-vector of features for the individual j in cluster i.

• βββi = (βi1, βi2, . . . , βip)
T : p-vector of cluster-specific underlying model parameters.

• bi: the cluster specific random effects.

3.2 Estimate Parameters

To solve the frailty model, serveral methods have been proposed these years. Xue and Ding (1999) used a
Gibbs Sampling approach. Ripatti and Palmgren (2000) considered a penalized partial likelihood approach.
Vaida and Xu (2000) proposed a nonparametric maximum likelihood estimator, obtained using a Monte Carlo
EM algorithm. Cortinas-Abrahantes et al. A comprehensive comparison of these methods can be found in
Gamst et al.(2009). We will follow one of these methods mentioned above or other related methods, to solve
this problem.
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